Exercise 34

Two persons pull horizontally on ropes attached to a post, the angle between the ropes being 60°. Person A pulls with a force of 150 lb , while person B pulls with a force of 110 lb .
(a) The resultant force is the vector sum of the two forces. Draw a figure to scale that graphically represents the three forces.
(b) Using trigonometry, determine formulas for the vector components of the two forces in a conveniently chosen coordinate system. Perform the algebraic addition, and find the angle the resultant force makes with A.

Solution

Part (a)

The vector \mathbf{R} is the resultant force and is the vector sum of the 150 lb and 110 lb forces.

Part (b)

Use the $x y$-coordinate system shown below.

Let \mathbf{A} and \mathbf{B} be the forces due to person A and person B, respectively. Since \mathbf{B} points exclusively in the negative x-direction, it has no y-component, and a minus sign is needed in the x-component.

$$
\mathbf{B}=(-110,0)
$$

Zoom in on \mathbf{A} in the figure.

The angle between \mathbf{A} and the y-axis is 30°. Determine the components of this vector.

$$
\begin{aligned}
\cos 30^{\circ} & =\frac{y}{150} \\
\sin 30^{\circ} & =\frac{x}{150}
\end{aligned}
$$

Solve for x and y.

$$
\begin{aligned}
& y=150 \cos 30^{\circ}=75 \sqrt{3} \mathrm{lb} \\
& x=150 \sin 30^{\circ}=75 \mathrm{lb}
\end{aligned}
$$

75 lb

Since the 75 lb force points in the negative x-direction, a minus sign is needed. On the other hand, the $75 \sqrt{3} \mathrm{lb}$ force points in the positive y-direction, so no minus sign is needed.

$$
\mathbf{A}=(-75,75 \sqrt{3}) \mathrm{lb}
$$

Consequently, the resultant in this coordinate system is

$$
\mathbf{R}=\mathbf{A}+\mathbf{B}=(-110,0)+(-75,75 \sqrt{3})=(-185,75 \sqrt{3}) .
$$

Determine the angle of \mathbf{R} from the x-axis.

$$
\tan \theta=\frac{75 \sqrt{3}}{-185} \quad \rightarrow \quad \theta=\pi-\tan ^{-1}\left(\frac{75 \sqrt{3}}{185}\right) \approx 144.9^{\circ}
$$

Therefore, the angle between \mathbf{R} and \mathbf{A} is about $144.9^{\circ}-30^{\circ}-90^{\circ}=24.9^{\circ}$.

